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In the class of bivariate extreme value copulas, an upper bound is calculated for the
measure of non-exchangeability μ∞ based on the L∞-norm distance between a copula C
and its transpose Ct(x, y) = C(y, x). Copulas that are maximally non-exchangeable with
respect to μ∞ are also determined. Moreover, similar upper bounds are given, respectively,
for the class of all EV copulas having a fixed upper tail dependence coefficient and for the
larger class of Archimax copulas.
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1. Introduction

Let (X, Y ) be a pair of continuous random variables defined on the same probability space (Ω,F ,P). The joint cumula-
tive distribution function (= d.f.) H and the marginals F X and FY of (X, Y ) are defined, respectively, by

H(x, y) = P(X � x, Y � y), F X (x) = P(X � x), FY (y) = P(Y � y)

for all x, y ∈ R. As shown in [34], H can be represented, for all x, y ∈ R, in the form H(x, y) = C(F X (x), FY (y)), where the
function C , called copula, is the restriction on [0,1]2 of the joint d.f. of the random pair (U , V ), where U = F X (X) and
V = FY (Y ). For a complete overview about copulas and some of its applications, see [14,21,29,30,33].

A copula C is called an extreme value copula (EV copula, for short), if there exists a convex function A : [0,1] → [ 1
2 ,1],

max(t,1 − t) � A(t) � 1 for all t ∈ [0,1], such that for all (x, y) ∈ ]0,1[2,

C(x, y) = exp

(
log(xy)A

(
log(x)

log(xy)

))
. (1)

The function A is often referred to as the Pickands’ dependence function of the pair (X, Y ). Examples of EV copulas are the
independence copula Π(x, y) = xy and the comonotonicity copula M(x, y) = min(x, y). The interest in EV copulas stems
from their characterization as the large-sample limits of copulas of componentwise maxima of strongly mixing stationary
sequences (for more details, see [2,8,21,29,32,33]).
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For a suitable (parametric) choice of the dependence function A, several EV copulas can be constructed and estimated
from some real data (see, for instance, [3,4,15,18–20]). In particular, a more flexible statistical model can be constructed
when the EV copula C is not necessarily exchangeable, i.e. C(x, y) �= C(y, x) for some (x, y) ∈ ]0,1[2. In fact, as underlined
in [35], “in some contexts exchangeability would not be a reasonable assumption, and the degree of non-exchangeability
may be of interest in itself”. Examples of non-exchangeable EV copulas can be derived, for instance, from the asymmetric
mixed and logistic models [35], the bilogistic and the negative bilogistic models [6,22]. A method for constructing non-
exchangeable EV copulas has been proposed in [17], based on the asymmetrization procedure in [23] (see also [12,26,29]).
The usefulness of considering asymmetric EV models is also discussed, for example, in [35].

Nowadays, several investigations have been focused on the ways in which copulas can fail to be exchangeable (see [9,24,
31]). In particular, a special interest has been devoted to the problem of finding the so-called maximally non-exchangeable
copulas (with respect to a given measure) in a known class E of copulas, usually defined by means of a dependence
property [1,7,10,11]. Such investigations are not only of a theoretical interest, but might also have a practical impact in
the choice of a suitable family of copulas that one can use for a certain problem. In fact, families of copulas including the
maximally non-exchangeable copulas (eventually as limiting elements) span all the possible degrees of non-exchangeability
and, as such, should be more appropriate for describing situations where asymmetries should be considered into the model
(see [9] for a discussion).

Along these lines of investigations, we determine an upper bound for the measure of non-exchangeability μ∞ (as defined
below) of an EV copula and we give EV copulas that are maximally non-exchangeable with respect to μ∞ , i.e., EV copulas
that reach this upper bound (Section 2). Analogous considerations are, hence, made in Section 3 for the larger class of
Archimax copulas, introduced in [5].

2. Non-exchangeability for EV copulas

For any copula C , the measure of non-exchangeability μ∞ of C is defined by

μ∞(C) = 3
(

max
(x,y)∈[0,1]2

∣∣C(x, y) − C(y, x)
∣∣).

It takes values on [0,1] (see, e.g., [24,31]) and, in particular, μ∞(C) = 0 if, and only if, C is exchangeable. This measure may
be considered as a starting point for estimating other measures of non-exchangeability based on some L p-norm distance
(p � 1) between the copula C and its transpose Ct(x, y) = C(y, x). Moreover, it could be easily computed from some real
data by using, for instance, the empirical versions of C and Ct . For more details, see [9].

The upper bound for the measure μ∞ in the class of all EV copulas is given by the following result.

Theorem 1. For every EV copula C ,

μ∞(C) � 3 · 44

55
.

Moreover, μ∞(C) = 3 · 44

55 if, and only if, C ∈ {C1, C2} where

C1(x, y) =
{

y, x2 � y,

x
√

y, otherwise,
or C2(x, y) =

{
x, y2 � x,

y
√

x, otherwise.
(2)

Proof. Let C be an EV copula with dependence function A,

C(x, y) = exp

(
log(xy)A

{
log(x)

log(xy)

})
= (xy)

A(
log(x)

log(xy)
)
.

We aim at determining the value

δC = max
(x,y)∈[0,1]2

∣∣C(x, y) − C(y, x)
∣∣

= max
(x,y)∈]0,1[2

∣∣(xy)
A(

log(x)
log(xy)

) − (xy)
A(1− log(x)

log(xy)
)∣∣.

Suppose that δC is reached at a point (x, y) ∈ ]0,1[2 and set t = log(x)
log(xy)

. Without loss of generality, we assume that 0 < x <

y < 1, and, hence, t ∈ ]0, 1
2 [ and A(t) � A(1 − t).

Let Aα be the dependence function given by Aα(s) = max{1 − s, (1 −α)s +α} for α, s ∈ [0,1], where g(s) = (1 −α)s +α
is the line passing through (t, A(t)) and (1,1). Due to the convexity of A, we have that∣∣A(t) − A(1 − t)

∣∣ �
∣∣Aα(t) − Aα(1 − t)

∣∣.
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Since, for every (x, y) ∈ ]0,1[2, (xy)s is a decreasing function in s, we have∣∣(xy)A(t) − (xy)A(1−t)
∣∣ �

∣∣(xy)Aα(t) − (xy)Aα(1−t)
∣∣.

Let (tα, Aα(tα)) be the intersection point of the lines f (s) = 1− s and g(s) = (1−α)s+α. It is easy to see that tα = 1−α
2−α � 1

2 ,
and

Aα(tα) = 1

2 − α
, Aα(1 − tα) = 1 + α − α2

2 − α
.

Moreover, s �→ |Aα(s) − Aα(1 − s)| reaches its maximum at tα , and s �→ Aα(s) reaches its minimum at tα . Since (xy)s is a
decreasing and convex function in s, we have∣∣(xy)Aα(t) − (xy)Aα(1−t)

∣∣ �
∣∣(xy)Aα(tα) − (xy)Aα(1−tα)

∣∣;
and, as a consequence,

δC = max
(x,y)∈]0,1[2

(
max

α∈[0,1]
∣∣(xy)

1
2−α − (xy)

1+α−α2
2−α

∣∣).

Consider the mapping

ψα : [0,1] → [0,1], ψα(k) = k
1

2−α − k
1+α−α2

2−α ,

which attains the maximum at the point kα satisfying ψ ′
α(kα) = 0 and given by

kα = (
1 + α − α2) 2−α

α(α−1) .

After easy calculations, we can show that

δC = max
α∈[0,1]ψα(kα) = 44

55
,

and the maximum is attained when α = 1
2 . In particular, the dependence function A producing the value δC is

A(t) = max

(
1 − t,

t + 1

2

)
. (3)

The corresponding copula has the following expression:

C(x, y) =
{

y, x2 � y,

x
√

y, otherwise,
(4)

and δC is obtained when α = 1
2 , log(x)

log(xy)
= t1/2 = 1

3 , xy = k1/2 = ( 4
5 )6, and, hence, at the point ( 42

52 , 44

54 ).
The other EV copula that attains δC is given by the transpose of the copula C given by (4) and it is generated by the

dependence function A1(t) = A(1 − t). It can be also obtained from the above proof by assuming that t ∈ [ 1
2 ,1]. �

Remark 1. In [16], it has been proved that EV copulas satisfy a strong notion of positive dependence, namely they are
stochastically increasing (shortly, SI) in each variable. Recently, it was proved in [10] that the upper bound for the measure of

non-exchangeability μ∞ in the family of SI copulas is given by 3 · 5
√

5−11
2 ≈ 0.271 and, thus, it is greater than the analogous

upper bound in the family of EV copulas (approximately equal to 0.246).

Remark 2. Notice that the exchangeability of an EV copula C reflects on the symmetry of its dependence function A with
respect to the line {x = 1

2 }. Based on this fact, some other possible “ad hoc” measures of non-exchangeability for EV copulas
can be considered. However, in order to compare the asymmetry of EV copulas with the asymmetry of other classes of cop-
ulas already considered in the literature, we prefer to restrict ourselves to the general approach based on the measure μ∞ .

In [25] it has been considered a dependence coefficient θ for an EV copula C with dependence function A, given
by θ = 1 − A( 1

2 ). In the following, we refer to such a θ = θK M as the Klüppelberg–Mai dependence coefficient (shortly,
KM-dependence coefficient). For maximally non-exchangeable EV copulas of type (2), we have that θK M = 1

4 , i.e., the KM-
dependence coefficient takes the mean value among the two extremal case, θK M = 0 and θK M = 1

2 that correspond to the
exchangeable EV copulas Π and M , respectively. Notice that it is easy to show that θK M is also related to the upper tail
dependence coefficient λU of the copula C by means of the formula 2θK M = λU (see [21]). By using the same ideas of The-
orem 1, one can find the maximally non-exchangeable EV copulas with a given KM-dependence coefficient, or, equivalently,
a given upper tail dependence coefficient, as shown by the following result.
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Proposition 2. Let C be an EV copula with dependence function A. Suppose that the KM-dependence coefficient of C is given by
θ ∈ ]0, 1

2 [. Then

μ∞(C) � 3
((

1 + 2θ − 4θ2) 1
2θ(−1+2θ) − (

1 + 2θ − 4θ2) 1+2θ−4θ2
2θ(−1+2θ)

)
. (5)

Moreover, μ∞(C) attains the upper bound in (5) if, and only if, C ∈ {C1, C2} where C1 and C2 are the EV copulas with dependence
functions given, respectively, by:

A1
θ (t) = max(1 − t,2θt + 1 − 2θ) or A2

θ (t) = max(t,1 − 2θt). (6)

Proof. Let C be an EV copula with dependence function A such that A( 1
2 ) = 1 − θ for a given θ ∈ ]0, 1

2 [. We aim at
determining the value

δC = max
(x,y)∈[0,1]2

∣∣C(x, y) − C(y, x)
∣∣.

We consider that δC is reached at a point (x, y) ∈ ]0,1[2 and set t = log(x)
log(xy)

. Without loss of generality, we assume that

t ∈ ]0, 1
2 [ and A(t) � A(1 − t). By repeating the same procedure as in the proof of Theorem 1 and considering the constraint

on the value A( 1
2 ), we obtain that the dependence function that describes the maximally non-exchangeable case is given by

Aθ (t) = max(1 − t,2θt + 1 − 2θ).

In particular, δC is obtained when tθ = 2θ
2θ+1 and, hence,

Aθ (tθ ) = 1

2θ + 1
, Aθ (1 − tθ ) = 2θ + 1 − 4θ2

2θ + 1
.

Now, δC is the maximum of

ψθ : [0,1] → [0,1], ψθ (k) = k
1

2θ+1 − k
2θ+1−4θ2

2θ+1 ,

which is attained at the point kθ satisfying ψ ′
θ (kθ ) = 0 and given by

kθ = (
1 + 2θ − 4θ2) 1+2θ

2θ(−1+2θ) .

Elementary calculations show

δC = ψθ(kθ )

= ((
1 + 2θ − 4θ2) 1+2θ

2θ(−1+2θ)
) 1

1+2θ − ((
1 + 2θ − 4θ2) 1+2θ

2θ(−1+2θ)
) 1+2θ−4θ2

1+2θ

= (
1 + 2θ − 4θ2) 1

2θ(−1+2θ) − (
1 + 2θ − 4θ2) 1+2θ−4θ2

2θ(−1+2θ) ,

which is the desired assertion. �
EV copulas generated by the dependence functions of Eq. (6) belong to the Marshall–Olkin family of copulas. For instance,

Aθ corresponds to the survival copula of Marshall–Olkin bivariate exponential distribution [28], which is associated with a
random pair (X, Y ) with stochastic representation (X, Y ) = (Z ,min(Z , Z1)), where Z and Z1 are independent exponential
r.v.’s with rates 1 and 1+2θ

2θ
. Although these copulas have a singular component (and, hence, seem to be not very appealing

for applications), they have been recently considered as a basis for constructing multivariate copulas with some interesting
properties and applications (compare with [12,27]).

Moreover, note that Aθ can be considered as a limiting case of the asymmetric logistic model considered in [35, Eq. (5.3)],
which can hence be considered adequate for modeling a wide range of asymmetry.

3. Non-exchangeability for Archimax copulas

Now, let us consider the class of Archimax copulas, which has been introduced in [5].
Let A : [0,1] → [1/2,1] be a convex function such that max(t,1 − t) � A(t) � 1 for every t ∈ [0,1], and let ϕ be an

additive generator of an Archimedean copula, i.e. ϕ : [0,1] → [0,+∞] is continuous, strictly decreasing and convex with
ϕ(1) = 0 and pseudo-inverse ϕ[−1] defined by

ϕ[−1](t) =
{

ϕ−1(t), 0 � t � ϕ(0),
0, otherwise.
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The following function

Cϕ,A(x, y) := ϕ[−1]
[(

ϕ(x) + ϕ(y)
)

A

(
ϕ(x)

ϕ(x) + ϕ(y)

)]
is a copula, known as Archimax copula (generated by ϕ and A). The family of Archimax copulas includes both Archimedean
copulas and EV copulas. As a matter of fact, it can be also obtained from the family of EV copulas by using the transforma-
tion of copulas described in [13].

As we will see in the next result, the previous methods for finding bounds for the non-exchangeability of EV copulas can
be further applied to investigate the maximal non-exchangeability of this class of copulas.

Proposition 3. For every Archimax copula Cϕ,A

μ∞(Cϕ,A) � 3

(
sup

u∈]0,+∞[

∣∣∣∣ϕ[−1](u) − ϕ[−1]
(

5u

4

)∣∣∣∣
)

. (7)

Moreover, μ∞(Cϕ,A) attains the upper bound in (7) if, and only if, C ∈ {C1, C2} where C1 and C2 are the Archimax copulas generated
by ϕ and by the dependence functions given, respectively, by:

A1(t) = max

(
1 − t,

t + 1

2

)
, or A2(t) = max

(
t,

2 − t

2

)
. (8)

Proof. Let C = Cϕ,A be an Archimax copula. We aim at determining the value

δC = max
(x,y)∈[0,1]2

∣∣C(x, y) − C(y, x)
∣∣.

Suppose that δC is reached at a point (x, y) ∈ ]0,1[2 and set t = ϕ(x)
ϕ(x)+ϕ(y)

. Without loss of generality, we assume that

t ∈ ]0, 1
2 [ and A(t) � A(1 − t). Then

δC = sup
(x,t)∈]0,1[×]0, 1

2 [

∣∣∣∣ϕ[−1]
(

ϕ(x)

t
· A(t)

)
− ϕ[−1]

(
ϕ(x)

t
· A(1 − t)

)∣∣∣∣.
Setting u = ϕ(x)A(t)

t , we have

δC = sup
u∈]0,+∞[

(
sup

t∈]0,1/2[

∣∣∣∣ϕ[−1](u) − ϕ[−1]
(

u
A(1 − t)

A(t)

)∣∣∣∣
)

.

Now, for a fixed u, the above difference takes its maximum value for some dependence function A that realizes the maxi-
mum value of A(1−t)

A(t) . But, as in the proof of Theorem 1, from the convexity of A it follows that:

A(1 − t)

A(t)
� Aα(1 − t)

Aα(t)
,

where, for α, s ∈ [0,1], Aα(s) = max{1 − s, (1 − α)s + α} and g(t) = (1 − α)s + α is the line passing through (t, A(t)) and
(1,1). Moreover,

Aα(1 − t)

Aα(t)
� Aα(1 − tα)

Aα(tα)
,

where tα = 1−α
2−α , Aα(tα) = 1

2−α and Aα(1 − tα) = 1+α−α2

2−α , and Aα(1−tα)
Aα(tα)

takes its maximum value when α = 1
2 . Therefore

δC = sup
(u,α)∈]0,+∞[×]0,1[

∣∣∣∣ϕ[−1](u) − ϕ[−1]
(

u
Aα(1 − tα)

Aα(tα)

)∣∣∣∣
= sup

u∈]0,+∞[

∣∣∣∣ϕ[−1](u) − ϕ[−1]
(

5u

4

)∣∣∣∣,
which is the desired assertion. �
Remark 3. Notice that any maximally non-exchangeable Archimax copula (in particular, EV copula) has a singular compo-
nent. In fact, it can be easily seen that a necessary condition for the absolute continuity of an Archimax copula Cϕ,A is the
existence (and continuity) of both first derivatives on ]0,1[2, which requires (again as a necessary condition) the differen-
tiability of the dependence function A on ]0,1[. However, non-exchangeable Archimax copulas are linked with dependence
functions of type (8), which either in the point 1/3 or in 2/3 do not possess the derivative.
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Table 1
Approximated sharp upper bounds for the mea-
sure of non-exchangeability of families of Archi-
max copulas with a specified additive generator.

Generator ϕ(t) maxA(μ∞(Cϕ,A))

t−1 − 1 0.167
log( 3−t

2t ) 0.274
(− log(t))3 0.082

− log( e−t −1
e−1−1

) 0.214
1 − t 0.600

The maximal non-exchangeability of several families of Archimax copulas additively generated by some ϕ is computed
in Table 1. As can be noted, Archimax copulas have a wider range of asymmetry than EV copulas. Moreover, due to the fact
that they are easily tractable and can be conveniently simulated [5], this family seems to have several nice properties for
describing stochastic models, which cannot be assumed to be exchangeable and/or to have an EV interpretation.
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